## QFT I exercises - sheet 3

To be handed in 6th of November @ start of lecture (12:00). Exercises labelled "BONUS" are not counted towards the result: they are meant as a challenge :).

## Green's functions, schmeen's functions

Let $\phi$ be a free real scalar field. It's Lagrangian is, as usual, given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

This field can be canonically quantised as discussed in the lecture (and Peshkin\&Schroeder). Below $\phi$ is always the 'quantised' operator-valued field.
a Compute $\langle 0| \phi(x) \phi(y)|0\rangle$.
b Argue translation invariance dictates that the answer should not depend on $x^{\mu}+y^{\mu}$ as long as the vacuum is invariant under translations. Hint: $\mathcal{O}(x+a)=e^{i a P} \mathcal{O}(x) e^{-i a P}$ for any operator $\mathcal{O}$ where $P$ generates translations.
c Compute $\langle 0|[\phi(x), \phi(y)]|0\rangle$. Hint: recycle a)!
d Compute $\langle 0| T(\phi(x) \phi(y))|0\rangle$ which is defined as $\theta\left(x_{0}-y_{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle+$ $\theta\left(y_{0}-x_{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle$. Hint: recycle a)!
e Compute $\langle 0| \phi(x) \phi(y) \phi(z)|0\rangle$.
f Why is the vacuum expectation value of an odd number of $\phi$ 's $(\sim$ $\langle 0| \phi^{\text {odd }}|0\rangle$ ) always zero?
g BONUS: Show $\langle 0| \phi(w) \phi(x) \phi(y) \phi(z)|0\rangle=D(w-x) D(y-z)+D(w-$ $y) D(x-z)+D(w-z) D(x-y)$ where $D(x-y)$ is the answer to a). Guess the structure of the result for the vacuum expectation value of six and more fields as a sum over products of $D$ functions.

The vacuum expectation values just computed have an interpretation as a Green's function for the Klein-Gordon equation. That is, the formal solution to

$$
\begin{equation*}
\left(\partial^{2}+m^{2}\right) G(x-y)=-i \delta^{4}(x-y) \tag{2}
\end{equation*}
$$

h Show the Green's function in momentum space is $G(p)=\frac{\mathrm{i}}{p^{2}-m^{2}}$.
i Write down the formal expression for $G(x-y)$. Why is this 'formal' only?
j Interpret the integral along $p^{0}$ as a contour integral in the complex plane. Show explicitly which contour leads to the answer of question d).
$\mathrm{k} \quad$ Show this leads to $\langle 0| T(\phi(x) \phi(y))|0\rangle=\lim _{\epsilon \downarrow 0} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon} e^{-\mathrm{i} p(x-y)}$

## Poincare algebra

Let $\hat{J}_{\mu \nu}$ be the operator

$$
\begin{equation*}
\hat{J}_{\mu \nu}=\mathrm{i}\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{P}^{\mu}=\mathrm{i} \partial^{\mu} \tag{4}
\end{equation*}
$$

a Compute the commutator $\left[\hat{J}^{\mu \nu}, \hat{J}^{\rho \sigma}\right]$ to show these operators satisfy the Lorentz algebra.
b Show $\hat{P}^{\mu}$ is the generator of translations. Hint: consider the effect of a translation on a function $\phi(x)$
c Compute $\left[\hat{P}^{\mu}, \hat{P}^{\nu}\right]$
d Compute $\left[\hat{P}^{\mu}, \hat{J}^{\nu \rho}\right]$. Hint: you could guess the form of the answer.
e Show that for infinitesimal rotations parametrised by a set of three angles $\theta_{i}$ one has

$$
\begin{equation*}
\delta x^{i}=\frac{\mathrm{i}}{2} \theta_{k} \epsilon^{k m n} \hat{J}_{m n} x^{i} \quad \text { with }\{i, k, m, n\} \in\{1,2,3\} \tag{5}
\end{equation*}
$$

by explicit computation and comparison to exercise sheet 0 .
f Obtain the corresponding formula for the change in $x^{\mu}$ under infinitesimal boosts parameterised by three velocities $v_{i}$

The algebra obeyed by the generators $\hat{J}$ and $\hat{P}$ in this exercise is known as the Poincare algebra.
g Define a new generator $\hat{\Delta}=\mathrm{i} x^{\mu} \partial_{\mu}$. Which transformation does this generator generate? Hint: compute $\left(e^{\mathrm{i} \lambda \hat{\Delta}}\right) x$
h Compute the commutator of $\hat{\Delta}$ with $\hat{J}, \hat{P}$ and itself.
i BONUS: argue that $\hat{\Delta}$ cannot correspond to the generator of an exact symmetry of nature.

